Birzeit University
 Faculty of Information Technology
 Computer Systems Engineering Department
 Digital Lab ENCS312 EXP. No. 2
 Comparators, Adders and Subtractors

1.1 Objectives

- To understand the construction and operating principle of digital comparators.
- To construct comparators with basic gates and IC.
- To implement half- and full a dders using basic logic gates and IC.
- To understand the theory of complements.
- To construct half- a nd full- subtractor circ uits.

1.2 Apparatus

1. KL-22001 Basic Circuit Lab.
2. KL-26001 Combinational Logic Circ uit Experiment Module (1).
3. KL-26002 Combinational Logic Circ uit Experiment Module (2).
4. KL-26005 Combinational Logic Circ uit Experiment Module (5).

1.3 Pre Lab

Prepare all sections and Hand out all the required designs to your tea ching assistant.

1.4 Theory

1.4.1. Comparator Circuit

At least two numbers are required to perform any comparison. The simplest form of the comparator has two inputs. If the two inputs are called A and B, there are three possible outputs: $A>B, A=B$, and $A<B$. Fig1.1 shows the schematic and symbol of a simple comparator.

(a) Logic Diagram

(b) C irc uit symbol

RG 1.1: Comparator

In actual applications 4-bit comparators are used most often. In a 4-bit comparator, each bit represents $2^{0}, 2^{1}, 2^{2}$, and 2^{3}. Comparison will start from the most significant bit (2^{3}), if input A is greater than input B at the 2^{3} bit, the " $A>B$ " output will be in high state. Fig 1.2 shows the schematic and symbol of 4 bit comparator.

(a) Constructed with four 1-bit Comparators

(c) Circ uit Symbol

FG 1.2: 4-bit Comparator

1.4.2. Half- and Full- Adder Circuits

Digital computers perform a variety of information processing tasks. Among the functions encountered are the various anthmetic operations. The most basic anthmetic operation is the addition of two binary digits. Combinational circ uit that performs the addition of two bits is called a half adder. One that performs the addition of three bits (two significant bits and previous camy) is a full adder. The names if the circ uits stem from the fact that two half adders can be employed to implement a full adder.

RG 1.2: Half- and full- adders

1.4.3. Half- and Full-Subtractor Circuits

Binary subtraction is usually performed by using 2's complement. Two steps are required to obtain 2 's complement. First, the subtrahend is inverted to 1 's complement, i.e. a " 1 " to a " 0 " and a " 0 " to a " 1 ". Secondly, a " 1 " is added to the least signific ant bit of the subtrahend in 1 's complement.

A half-subtractor performs the task if subtraction 1-bit at a time regardless of whether the minuend is greater or less than the subtrahend. "Borrow" from previous subtraction is not taken into consideration.

FG 1.3: Half-Subtractor
The full-subtractor has to consider borrow(s) from previous stages.

FG 1.4: Full-Subtractor

1.5 Procedure

1.5.1. Comparator Circuits

A. Constructing Comparator with Basic Logic Gates

1. Set the KL-26001 Module on the KL-22001 Basic Electricity Circuit Lab, and locate block a. Complete the connections by refeming to wing diagram in Fig 1.5(a) and the logic diagram in Fig1.5 (b).

(a) Wiring diagram (KL-26001 block a)

(b) Logic Diagram

FG 1.5: 1-bit comparator
2. The inputs are active high. Connect inputs A and B to Data Switches SW1 and SW2. The outputs are active low. Connect outputs F1, F2, F5 to logic Indicators L1, L2, L3, respectively. Apply +5 VDC from the Fixed Power on KL-26001 Module.
3. Follow the input sequences in Table 1.1. Observe and record the outputs.

INPUTS			OUTPUTS			
B	A		F1	F2	F5	
(SW2)	$($ SW1 $)$		$($ L1)	(L2)	$($ L3 $)$	
0	0	$\mathrm{~A}=\mathrm{B}$				
0	1	$\mathrm{~A}>\mathrm{B}$				
1	0	$\mathrm{~A}<\mathrm{B}$				
1	1	$\mathrm{~A}=\mathrm{B}$				

Table 1.1

(B) Constructing Comparator with TTL IC

1. Set the KL26005 Module on the KL-22001 Basic Electricity Circuit Lab, and locate block a. Apply +5VDC from the Fixed Power on KL-22001 Lab to KL26005 Module. U6 is a 7485 4-bit comparator IC. Its pin assignment and function table are given below.

	FUNCTION TABLE									
16-15 $-14 \sqrt{13}-12 \cdot \sqrt{11} \cdot \mathbf{1 0}-9$	COMPARING INPUTS				CASCADING INPUTS			OUTPUTS		
A3 B2 A2 A1 B1 A0	A3, ${ }^{\text {B }}$ 3	A2,B2	A1,B1	$A 0, B 0$	$A>B$	$A<B$	$A=B$	A>B	A<B	$A=B$
- ${ }^{\text {a }}$	$A 3>B 3$	X	X	X	X	X	X	H	L	L
B3 B0	A3<B3	X	X	X	X	X	X		H	L
$A<B \quad A=B \quad A>B \quad A>B \quad A=B \quad A<B$	$A 3=B 3$	$A 2>B 2$	X	X	x	X	x	H	L	L
IN IN IN OUT OUT OUT	$A 3=B 3$	A2<B2	X	X	x	X	X	L	H	L
	$A 3=83$	$A 2=B 2$	A1>B1	X	X	X	X	H	L	L
$1 \mathrm{H}_{2} \mathrm{H} \mathrm{H}_{4} \mathrm{H} 5 \mathrm{H}$ H7H8	A $A 3$	A $2=B 2$ $A 2$	$\mathrm{A} 1=\mathrm{B} 1$	$\stackrel{\text { A }}{ } \stackrel{\text { ¢ }}{ }$	x	${ }^{x}$	X	H	$\stackrel{\mathrm{H}}{\mathrm{L}}$	L
B3 $4<B$ AmB $A>B \quad A>B \quad A=B \quad A<B$ GN	$\mathrm{AB}=83$	$A 2=B 2$	$A 1=B 1$	$A 0<B 0$	x	X	X	L	H	L
DATA $\underbrace{\text { arab }}$	$A 3=83$	$A 2=B 2$	$A 1=B 1$	$A 0=60$	H	L	L	H	L	L
INPUT CASCADE INPUTS OUTPUT	$A 3=83$	$\mathrm{A} 2=B 2$	$A 1=B 1$	$A 0=B 0$	L	H	L	L	H	L
7485 pin assignment and function table										

FG 1.6: 26005 block a
2. Connect the inputs $A 1 \sim A 4$ to $\mathrm{SW} 4 \sim S W 7$ and $\mathrm{B} 1 \sim \mathrm{~B} 4$ to $\mathrm{SW} 0 \sim S W 3$, respectively.
3. Connect the outputs $A=B$ to $L 1, A<B$ to L, a nd $A>B$ to $L 3$.
4. Follow the input sequences in Table1.2. Observe and record the outputs.

INPUTS								OUTPUTS		
A4	A3	A2	A1	B4	B3	B2	B1	L3	L2	L1
SW7 SW6 SW5 SW4				SW3	SW2	SW1	swo	$A>B$	A<B	$A=B$
0	0	0	0	0	0	0	0			
0	1	0	1	0	0	1	1			
0	1	0	0	1	0	0	0			
1	0	1	0	1	0	1	0			
0	1	1	0	1	0	1	1			
1	1	1	1	1	1	0	0			

Table 1.2
Design a three-bit comparator (using the basic comparator) and hand it out to your TA. (Pre Lab)

1.5.2. Half- and Full-Adder Circuits

A. Constructing Half- and Full-Adders with Basic logic Gates

Hand out, Design, Boolean function, and truth table of half- and fulladder to your TA. (Pre Lab)

1. Set the KL-26002 Module on the KL-22001 Basic Electric ity Circuit Lab, a nd locate block a.
2. Complete the connections by refeming to the wiring diagram in Fig1.7 Apply +5VDC from Fixed Power on the KL-22001 Lab to KL26002 Module.

FG 1.8: Half-Adder Circ uit
3. Connect inputs A and B to Data Switches SW0 and SW1, respectively. Connect output F1 and F2 to logic Indicators L1 and L2.
4. Follow the input sequence for A and B in Table1.3 and record the output states.

INPUTS		OUTPUTS	
SW1 (B)	SWO (A)	CARRY (F1)	SUM (F2)
0	0		
0	1		
1	0		
1	1		

Table1.4
5. Complete the connections by refeming to the wiring diagram in Fig1.10 and the full-a dder circuit in Fig1.9.

FG 1.9: Full-Adder Circ uit

RG1.10: Wiring Diagram (KL-26002 Block a)
6. Connect A, B, C to SW1, SW2, and SW3. The input A represents the augend, input B the addend, and the C is the previous camy. Connect outputs F3 and F5 to Logic Indicators L1 and L2, respectively.
7. Follow the input sequence in Table1.5 a nd record the output states.

			OUTPUTS	
SW3 (C)	SWP (B)	SW1 (A)	CARRY (F3)	SUM (F5)
0	0	0		
0	0	1		
0	1	0		
0	1	1		
1	0	0		
1	0	1		
1	1	0		
1	1	1		

Table 1.5

B. Construc ting 4-Bit Full-Adder with IC

1. Set the KL-26002 Module on the KL-22001 Basic Electricity Lab, and locate block b. The U5, 7483 is a 4-bit binary adder. Connect input Y5 to ground " 0 ", so the XOR gates of U6, which are connected to $Y 0 \sim Y 3$, will a ct as buffers.
2. Connect inputs $\mathrm{XO} \sim \mathrm{X3}$ (addend) and Y0~Y3 (augend) to Data Switches SW0~SW3 and SW4~SW7 respectively. Connect F1 (Cary out) to L1 and $\sum 0 \sim \sum 3$ (sum) to L2~L5. Apply +5 VDC from the Fixed Power on KL-22001 Lab to KL-26002 Module.

FG 1.11: Wiring Diagram (KL-26002 block b)

3. Follow input sequences in Table 1.6 and record the outputs F1 in binary and \sum in hexadecimal.
$\mathbf{X = X 3 X 2 X 1 X 0}$
$\mathbf{Y = Y 3 Y 2 Y 1 Y 0}$
$\sum=\sum 3 \sum 2 \sum 1 \sum 0$

INPUTS		OUTPUTS	
Y	X	Σ	F 1
0	0		
0	1		
0	6		
0	9		
0	F		
1	3		
1	6		
1	8		
3	6		
4	8		
4	F		
8	7		
9	9		
A	B		
C	E		
F	F		

Table 1.6

C. Constructing BCD Adder

1. Set the KL-26002 Module on the KL-22001 Basic Electricity Circuit Lab, and locate block b. The circuit, shown in Fig1.12, will act as a BCD adder.
2. Connect inputs $X 0 \sim X 3$ to $\mathrm{SW} 0 \sim S W 3, Y 0 \sim Y 3$ to $\mathrm{SW} 4 \sim S W 7, Y 5$ to ground ("0").

U5 and U9 are 7483 4-bit binary full adder, connect outputs F8-F11 of U5 to the inputs of one of the digital displays. F8~F11 should also be connected to Logic Indicators L1~L4. Connect F1 and F2 to logic Indicators L5 and L6, respectively.

Connect outputs F4~F7 of U9 to inputs of a nother Digital Display. Also connect F4~F7 to L0-L3 and F3 to L4.

FG 1.12: Wiring Diagram (KL-26002 block b)
3. F11~F8 are the sum of $X 0 \sim X 3$ added to $Y 0 \sim Y 3$ while $F 1$ is the camy. Follow the input sequences for $\mathrm{X} 0 \sim X 3$ and $\mathrm{Y} 0 \sim Y 3$ in the table 1.7 and record the output state.

INPUTS								OUTPUTS (U5)				FINAL (U9)					
X3	X2	X1	X0	Y3	Y2	Y1	Yo	F1	F11 F10	F9	F8	F2	F3	F7	F6	F5	F4
0	0	0	0	0	0	0	0										
0	0	0	1	0	0	1	1										
0	0	1	1	0	1	0	0										
0	0	1	0	0	0	1	0										
0	0	1	0	1	0	0	0										
0	0	1	1	0	1	1	0										
0	1	0	0	0	0	1	0										
0	1	0	0	0	1	0	1										
0	1	0	0	0	1	1	0										
0	1	0	1	0	1	1	0										
0	1	1	0	0	1	1	1										
0	1	1	1	1	0	0	0										
0	1	1	1	1	0	0	1										
1	0	0	0	1	0	0	1										
1	0	0	1	1	0	0	1										
1	0	1	0	1	0	1	0										
1	0	1	0	1	0	1	1										
1	0	1	0	1	1	0	0										
1	0	1	1	1	1	1	0										
1	1	1	1	1	1	1	1										

Table 1.7

1.5.3. Half- and Full Subtractor Circuits.

A. Constructing Half-/Full Subtractors with basic logic Gates.

Hand out, Logic Diagram, Boolean function, and truth table of a half- a nd full- Subtractor to your TA.(Pre lab)

1. Set the KL-26002 Module on the KL-22001 Basic Electricity Circuit Lab, a nd locate block a. Complete the connections by referning to the wiring diagram in Fig1.13. Apply +5 VDC from Fixed Power on KL-22001 Lab to KL-26002 Module.
2. Connect inputs $A \sim C$ to Data Switches SW0~SW2; outputs F2 to L1; F1 to L2; F3 to L3; F5 to L4. When C=0 the circuit is halfsubtractor with the borrow output F1 (BW1) and the differences output F2 (DF1). When $\mathrm{C}=1$ the circuit is a full-subtractor with borrow output F3 (BW2) and the differences output F5 (DF2).

FG 1.13: Wiring Diagram (KL-26002 block a)
3. Follow the input sequences in Table 1.9 a nd record output states.

INPUTS					BW1	
DF1	BW2	DF2				
C	A	B	F1	F2	F3	F5
0	0	0				
0	0	1				
0	1	0				
0	1	1				
1	0	0				
1	0	1				
1	1	0				
1	1	1				

Table 1.9
B. Constructing 4-Bit Full-Subtractor with IC

1. Set the KL-26002 Module on the KL-22001 Basic Electric ity Circ uit Lab, a nd locate block b. Apply +5VDC from the Fixed Power on KL-22001 lab to KL-26002 Module.

FG 1.14: Wiring Diagram (KL-26002 block b)
2. Connect inputs $X 3 \sim X 0$ to SW7~SW4; Y3~Y0 to SW3~SW0. Connect outputs F1 to L1; F11 to L5-L2. To execute the subtract operation, connect Y 5 to +5 V (" 1 ") (or Cin of U5=1). Follow the input sequences and record the output states in Table 1.10.

InPUTS								BORROW DIFFERENCE		
X3	X2	X1	xo	Y3	Y2	Y1	Yo	F1	F11 F10 F9	F8
0	1	0	0	0	1	0	0			
0	1	0	0	0	0	1	1			
1	0	0	0	0	0	1	1			
1	0	0	0	0	0	0	1			
1	0	0	1	1	0	0	0			
1	0	0	1	0	1	1	1			
1	0	1	0	0	1	1	0			
1	0	1	0	0	1	0				
1	0	1	1	1	0	1				
1	1	1	1	1	0	1	0			

Table 1.10

1.6 Problem: Building Comparator Circuit

A 4-input, 3-output circuit that compares 2-bit unsigned numbers and output a (1) on one of three output lines according to whether the first number is greater than, equal to, or less than the other number. You can only use two 4×1 multiplexers.

